

Searching for New Physics Using Rare B Decays at the Tevatron

Bill Lee FNAL

Hadron Collider Physics Symposium 24 August 2010

Outline

- Introduction
- Look at three analyses of rare decays and their implication on the Standard Model.
 - $-B_s \rightarrow \mu\mu$
 - $-B_s \rightarrow J/\psi \phi$
 - Like sign dimuons
- Summary

Rare Decays in B Physics

- The study of rare decays allows tests of the standard model at very high precision.
- These decays are suppressed at the tree level
- BSM physics can provide enhancements that can increase the likelihood of these decays.
- Can make new physics more obvious

Tevatron

- No longer the highest energy particle collider
- Still provides data for high precision measurements.
- A B factory
 - Provides a large σ(bb)
 - However inelastic cross section 10³ larger.

CDF and DØ Detectors

- Strong tracking system:
 - Excellent momentum resolution
 - 40 μm impact parameter resolution
- Ability to trigger on displaced tracks.
- Muon coverage to $|\eta| < 1$.
- PID using dE/dx in drift chambers and ToF.

- Tracker consisting of silicon and scintillating fiber.
 - Coverage up to $|\eta|$ <2.
 - Precise vertex reconstruction
- Excellent Muon ID
 - coverage to $|\eta| < 2$
- Reversible magnets

Luminosity

Rur

Run II Integrated Luminosity

19 April 2002 - 20 August 2010

• The analyses discussed here use 3.7 to 6.1 fb⁻¹ of data

Standard Model $B_s \rightarrow \mu\mu$

Branching fraction is very small

$$-B(B_s \to \mu\mu) = 3.6 \pm 0.3 \times 10^{-9}$$

- Rate is well understood
- Clean experimental signature
- Any enhancements due to new physics might be sizable and seen clearly

$B_s \rightarrow \mu\mu$ Analysis

- Collect Data using Dimuon triggers
- Preselect with vertex cuts, muon p_T cuts, ...
- Final selection based on a multivariate analysis to remove background
 - CDF measurement using 3 NN bins: 0.80, 0.95, 0.995
 - DØ measurement using NN in 0.9-1.0 and M($\mu\mu$) in 5.0-5.8 GeV/ c^2
- Make a measurement or set limits.
 - − B⁺ → J/ ψ K⁺ used as normalization.

$DØB_s \rightarrow \mu\mu$ Results

2D fit to BNN and $M(\mu\mu)$

In the signal region: 51 ± 4 background events expected 55 events in data

BR < 5.1 x 10⁻⁸ (95% CL) 14 times the SM Expected Limit: 3.8 x 10⁻⁸

CDF B $\rightarrow \mu\mu$ Results

BR(B_s
$$\rightarrow \mu\mu$$
) < 4.3 x 10⁻⁸ (95%CL)
BR(B_d $\rightarrow \mu\mu$) < 7.6 x 10⁻⁹ (95%CL)

The world's best limits.

Basic B_s Mixing

$$i \frac{d}{dt} \begin{pmatrix} B_s^0 \\ \bar{B}_s^0 \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^* - \frac{i\Gamma_{12}^*}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B_s^0 \\ \bar{B}_s^0 \end{pmatrix}$$

Diagonalize

Mass Eigenstates:
$$|B_s^H\rangle = p |B_s^0\rangle - q |B_s^0\rangle - |B_s^L\rangle = p |B_s^0\rangle + q |B_s^0\rangle$$
Heavy
Light

If CP is conserved then q = p, so the heavy state is CP odd and the Light state is CP even.

$$\Delta m_s = M_H - M_L \sim 2|M_{12}|$$

$$\Delta \Gamma_s = \Gamma_L - \Gamma_H \sim 2|\Gamma_{12}| \cos \varphi_s$$

New Physics in CP Violation

- CP violation in the B_s system
 - Occurs through interference of diagrams with and without mixing

Golden mode

- In SM, CP violation phase $2\beta s$ is predicted to be very small (0.038 \pm 0.002).
- However if there is new physics in the Bs mixing, then the observed phase: $\phi_s = \phi_{s \text{ SM}} + \phi_{s \text{ NP}}$, could potentially be large.

Previous CDF + DØ Result

p-value for the Standard Model point is 2.0% or 2.3σ

$B_s \rightarrow J/\psi \phi$ Analysis

- The B_s decays in to two vector mesons that are either CP-odd or CP-even.
- Perform a time dependent angular analysis to separate CP even/odd.
- Simultaneously fit two lifetimes (heavy/light) and three angles.
 - DØ: assume that KK system is in a Pwave
 - CDF: includes S-wave component and found it to be negligible.
- Tag the B_s flavor at time of production.

$B_s \rightarrow J/\psi \phi Lifetimes$

•
$$c\tau_s = 458.6 \pm 7.6 \text{ (stat)} \pm 3.6 \text{ (syst)} \ \mu\text{m}$$

•
$$\Delta\Gamma_{\rm s} = 0.075 \pm 0.035 \text{ (stat)} \pm 0.01 \text{ (syst) ps}^{-1}$$

•
$$|A_{\parallel}(0)|^2 = 0.231 \pm 0.014 \text{ (stat)} \pm 0.015 \text{ (syst)}$$

•
$$|A_0(0)|^2 = 0.524 \pm 0.013 \text{ (stat)} \pm 0.015 \text{ (syst)}.$$

•
$$\phi_{\perp} = 2.95 \pm 0.64 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

World's most precise single measurement of the B_g lifetime and decay width difference.

•
$$\tau_s = 1.47 \pm 0.04 \text{ (stat)} \pm 0.01 \text{ (syst) ps}$$

$$\Delta \Gamma_{\rm s} = 0.15 \pm 0.06 \text{ (stat)} \pm 0.01 \text{ (syst) ps}^{-1}$$

$$\Phi_{\text{s J/}\psi \, \phi} = -0.76 \pm 0.4 \, (\text{stat}) \pm 0.02 \, (\text{syst})$$

$B_s \rightarrow J/\psi \phi \text{ results}$

- CDF is now 0.8σ from the standard model and DØ is $\sim 1\sigma$ from the standard model.
- The new results are closer to to SM than previous.

Another Way to Test CP Violation

Dimuon Charge Asymmetry

- Normal decay $\overline{B} \to \mu^{-} X$
- B $\rightarrow \mu^{\text{-}} X$ only with flavor oscillation of B or B s
- Measure CPV by using the same sign dimuon charge assymetry. $A_{sl}^{b} = \frac{N_{b}^{++} N_{b}^{--}}{N_{c}^{++} + N_{c}^{--}}$
 - Asymmetry can occur if mixing rates are different.

A^b at the Tevatron

• Because the asymmetry comes from meson mixing, A^b_{sl} equals the charge asymmetry a^b_{sl} of "wrong sign" semileptonic B decays:

$$a_{\rm sl}^b = \frac{\Gamma(\overline{B} \to \mu^+ X) - \Gamma(B \to \mu^- X)}{\Gamma(\overline{B} \to \mu^+ X) + \Gamma(B \to \mu^- X)} = A_{\rm sl}^b \qquad = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

Semileptonic charge asymmetry

Dimuon charge asymmetry

- Both B_d and B_s are produced at the Tevatron, so both contribute to $A^b_{sl} = (0.506 \pm 0.043) \ a^d_{sl} + (0.494 \pm 0.043) \ a^s_{sl}$
- Standard model predicts $A_{sl}^b = (-0.023^{+0.005}_{-0.006}) \%$
 - Which is negligible, so any deviation is a signal of new physics.

Charge Asymmetry Results

Need to measure the raw asymmetry:

Inclusive muons

$$a \equiv \frac{n^+ - n^-}{n^+ + n^-}$$

Like sign dimuons

$$A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

- Calculate the backgrounds to each of raw numbers from the data
 - K^{\pm} , π^{\pm} decays; hadronic punch-through; muon reconstruction asymmetries; track mis-match
- Combine the above results

$$-A_{sl}^{b} = (0.957 \pm 0.251 \text{ (stat)} \pm 0.146 \text{ (syst)}) \%$$

• Currently statistically limited.

Charge Asymmetry Results

- Evidence for a dimuon charge asymmetry.
- Differs from the Standard Model

$$A_{sl}^b = (-0.023^{+0.005}) \%$$

- By 3.2σ favoring the production of matter over antimatter
- Consistent with world average of a^d_{sl}.

Constraining B Mixing Parameters

- Using the world average of a^d_{sl} the asymmetry result can be mapped onto the $\Delta\Gamma_s$ - ϕ_s plane
- Combining $B_s \to J/\psi \phi$ and the asymmetry result.
 - P-value of the SM point is 7%

Summary

- CDF and DØ continue to constrain the $B_s \to \mu\mu$ limit.
 - CDF has the current worlds best limit.
 - While CDF and D0 will probably not get to the standard model value by the end of the run, any enhancements from new physics can not be large.
- The CDF and DØ $B_s \to J/\psi$ ϕ results are now $\sim 1\sigma$ from the SM value.
 - CDF has the world's most precise single measurement of the B_s lifetime and decay width difference.
- The DØ dimuon asymmetry measurement has shown evidence for CP violation beyond the Standard Model.